100 research outputs found

    Neural Semantic Parsing over Multiple Knowledge-bases

    Full text link
    A fundamental challenge in developing semantic parsers is the paucity of strong supervision in the form of language utterances annotated with logical form. In this paper, we propose to exploit structural regularities in language in different domains, and train semantic parsers over multiple knowledge-bases (KBs), while sharing information across datasets. We find that we can substantially improve parsing accuracy by training a single sequence-to-sequence model over multiple KBs, when providing an encoding of the domain at decoding time. Our model achieves state-of-the-art performance on the Overnight dataset (containing eight domains), improves performance over a single KB baseline from 75.6% to 79.6%, while obtaining a 7x reduction in the number of model parameters.Comment: Accepted to ACL 201

    Differentiable Scene Graphs

    Full text link
    Reasoning about complex visual scenes involves perception of entities and their relations. Scene graphs provide a natural representation for reasoning tasks, by assigning labels to both entities (nodes) and relations (edges). Unfortunately, reasoning systems based on SGs are typically trained in a two-step procedure: First, training a model to predict SGs from images; Then, a separate model is created to reason based on predicted SGs. In many domains, it is preferable to train systems jointly in an end-to-end manner, but SGs are not commonly used as intermediate components in visual reasoning systems because being discrete and sparse, scene-graph representations are non-differentiable and difficult to optimize. Here we propose Differentiable Scene Graphs (DSGs), an image representation that is amenable to differentiable end-to-end optimization, and requires supervision only from the downstream tasks. DSGs provide a dense representation for all regions and pairs of regions, and do not spend modelling capacity on areas of the images that do not contain objects or relations of interest. We evaluate our model on the challenging task of identifying referring relationships (RR) in three benchmark datasets, Visual Genome, VRD and CLEVR. We describe a multi-task objective, and train in an end-to-end manner supervised by the downstream RR task. Using DSGs as an intermediate representation leads to new state-of-the-art performance.Comment: Winter Conference on Applications of Computer Vision (WACV), 202
    • …
    corecore